大数据处理面试题(大数据技术面试题)

2024-08-18

大数据分析师面试题:Redis的耐久化战略

RDB 是 Redis 默许的耐久化计划。在指定的时间距离内,实行指定次数的写操作,则会将内存中的数据写入到磁盘中。即在指定目录下生成一个dump.rdb文件。Redis 重启会通过加载dump.rdb文件恢复数据。

在执行save命令的过程中,服务器不能处理任何请求,但是bgsave(background save,后台保存)命令会通过一个子进程在后台处理数据RDB持久化。本质上save和bgsave调用的都是rdbSave函数,所以Redis不允许save和bgsave命令同时执行,当然这也是为了避免RDB文件数据出现不一致性的问题。

RDB 可以最大化 Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是 fork 出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。

Redis的数据持久化策略,无论是RDB还是AOF,都有其独特的应用场景和考量因素。理解它们的优缺点,结合业务需求和系统特性,才能做出最适合的决策。记住,没有一种方法是万能的,只有根据具体情境,才能最大化利用Redis的潜力。

缺点: (1)对于同一份数据来说,AOF的日志文件通常要比RDB的数据快照文件要大。 (2)AOF开启之后,Redis服务支持的写QPS会比RDB支持的写QPS低,因为AOF一般会配置成每秒fsync一次日志文件,当然每秒一次fsync的性能也还是很高的。

·首先介绍RDB、AOF的配置和运行流程,以及控制持久化的相关命令,如bgsave和bgrewriteaof。 ·其次对常见持久化问题进行分析定位和优化。 ·最后结合Redis常见 的单机多实例部署场景进行优化。 1 RDB RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。

基本的大数据面试问题和答案(50个)

大数据的本质与特性 大数据是处理海量、高速增长和多样性的数据,以提取价值和驱动业务决策的关键工具。其五大特征,Volume(数据量)、Velocity(速度)、Variety(多样性)、Veracity(准确性)和Value(价值),是理解其核心的关键。

您对大数据一词有什么了解? 大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。

问题分析:本次面试涉及的是分布式数据处理和数据分析的职位。但是,由于当时我未能迅速想到分布式处理的方案,因此提出了一种直观的处理方法。方案一:直观的处理方法是逐条检查日志文件F中的记录,与历史访问用户数据进行匹配。如果历史数据中存在匹配项,则忽略;如果不存在,则视为新增用户。

注意: 这是大数据访谈中提出的基本和重要问题之一。如果您看到面试官有兴趣了解更多信息,您可以选择详细解释五个V. 但是,如果您被问及“大数据”这一术语,甚至可以提及这些名称。告诉我们大数据和Hadoop如何相互关联。 大数据和Hadoop几乎是同义词。

MySQL面试精华:40个经典问题深度解析!深入理解MySQL的关键知识点,从基础到进阶,一文带你全面掌握!事务与隔离级别: MySQL中的事务是逻辑操作的基本单元,通过undo log、redo log、锁机制及MVCC实现四大特性:原子性(undo log)、一致性(redo log)、隔离性(锁)和持久性(MVCC)。

常见大数据公司面试问题有哪些?

您对大数据一词有什么了解? 大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。

你自身的优点 这个问题不仅仅是在大数据面试当中常常被问,在各行各业的面试中都经常出现。所以面试者要尽可能说一些和工作相关的优点,比如“学习能力强”“能抗住压力”等,再举一个自己之前工作的例子进行证明,这会让面试官觉得很真实。

大数据的本质与特性 大数据是处理海量、高速增长和多样性的数据,以提取价值和驱动业务决策的关键工具。其五大特征,Volume(数据量)、Velocity(速度)、Variety(多样性)、Veracity(准确性)和Value(价值),是理解其核心的关键。

大厂数据分析面试题,大数据结构化面试?

熟悉数据结构原理,复杂的项目无需为需求实现原理而烦恼。优化能力提升 随着了解的加深,能够发现与工作中数据结构特性相违背的代码,并具有优化修改的能力。提高面试成功率 学习50%以上互联网公司数据结构的面试问题纲领,提高面试合格率。

大数据的本质与特性 大数据是处理海量、高速增长和多样性的数据,以提取价值和驱动业务决策的关键工具。其五大特征,Volume(数据量)、Velocity(速度)、Variety(多样性)、Veracity(准确性)和Value(价值),是理解其核心的关键。

大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是为什么使用特殊的工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还使公司能够根据数据做出更好的业务决策。

大数据是与复杂和大型数据集相关的术语。关系数据库无法处理大数据,这就是使用特殊工具和方法对大量数据执行操作的原因。大数据使公司能够更好地了解其业务,并帮助他们从定期收集的非结构化和原始数据中获取有意义的信息。大数据还允许公司采取数据支持的更好的业务决策。

关于数据分析师常见的面试问题集锦 你处理过的最大的数据量?你是如何处理他们的?处理的结果。

lucene 从 4+版本后开始大量使用的数据结构是 FST。FST 有两个优点: (1)空间占用小。通过对词典中单词前缀和后缀的重复利用,压缩了存储空间; (2)查询速度快。O(len(str)的查询时间复杂度。 面试官:想了解大数据量的运维能力。

面试题-关于大数据量的分布式处理

1、面试题-关于大数据量的分布式处理 题目:生产系统每天会产生一个日志文件F,数据量在5000W行的级别。文件F保存了两列数据,一列是来源渠道,一列是来源渠道上的用户标识。文件F用来记录当日各渠道上的所有访问用户,每访问一次,记录一条。

2、使用函数f将F中的内容分配到N个文件FF…、FN中(可以并行处理)。 对文件FF…、FN进行去重(每个文件并行处理)。 将去重后的文件Fn与历史文件Hn比较,得到新增用户结果Rn(并行处理)。 合并RR…、RN得到当日新增用户(并行处理)。

3、大数据的本质与特性 大数据是处理海量、高速增长和多样性的数据,以提取价值和驱动业务决策的关键工具。其五大特征,Volume(数据量)、Velocity(速度)、Variety(多样性)、Veracity(准确性)和Value(价值),是理解其核心的关键。

4、分布式计算是一种计算方法,和集中式计算是相对的。分布式计算将该应用分解成许多小的部分,分配给多台计算机进行处理。这样可以节约整体计算时间,大大提高计算效率。分布式计算可以分为以下几类:传统的C/S模型。如HTTP/FTP/SMTP/POP/DBMS等服务器。

5、大数据是指那些超出常规软件工具处理能力的庞大数据集,它需要特别的处理模式以提取价值。 并行计算是指同时利用多个计算资源来解决计算问题,这通常涉及多处理机或网络化计算机。 并行计算在大数据分析中尤为重要,例如,在全球高清影像中搜索飞机,分布式处理可以显著提高搜索效率。